Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 10(24): 10973-10992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042265

RESUMO

Most cancer patients receive chemotherapy at some stage of their treatment which makes improving the efficacy of cytotoxic drugs an ongoing and important goal. Despite large numbers of potent anti-cancer agents being developed, a major obstacle to clinical translation remains the inability to deliver therapeutic doses to a tumor without causing intolerable side effects. To address this problem, there has been intense interest in nanoformulations and targeted delivery to improve cancer outcomes. The aim of this work was to demonstrate how vascular endothelial growth factor receptor 2 (VEGFR2)-targeted, ultrasound-triggered delivery with therapeutic microbubbles (thMBs) could improve the therapeutic range of cytotoxic drugs. Methods: Using a microfluidic microbubble production platform, we generated thMBs comprising VEGFR2-targeted microbubbles with attached liposomal payloads for localised ultrasound-triggered delivery of irinotecan and SN38 in mouse models of colorectal cancer. Intravenous injection into tumor-bearing mice was used to examine targeting efficiency and tumor pharmacodynamics. High-frequency ultrasound and bioluminescent imaging were used to visualise microbubbles in real-time. Tandem mass spectrometry (LC-MS/MS) was used to quantitate intratumoral drug delivery and tissue biodistribution. Finally, 89Zr PET radiotracing was used to compare biodistribution and tumor accumulation of ultrasound-triggered SN38 thMBs with VEGFR2-targeted SN38 liposomes alone. Results: ThMBs specifically bound VEGFR2 in vitro and significantly improved tumor responses to low dose irinotecan and SN38 in human colorectal cancer xenografts. An ultrasound trigger was essential to achieve the selective effects of thMBs as without it, thMBs failed to extend intratumoral drug delivery or demonstrate enhanced tumor responses. Sensitive LC-MS/MS quantification of drugs and their metabolites demonstrated that thMBs extended drug exposure in tumors but limited exposure in healthy tissues, not exposed to ultrasound, by persistent encapsulation of drug prior to elimination. 89Zr PET radiotracing showed that the percentage injected dose in tumors achieved with thMBs was twice that of VEGFR2-targeted SN38 liposomes alone. Conclusions: thMBs provide a generic platform for the targeted, ultrasound-triggered delivery of cytotoxic drugs by enhancing tumor responses to low dose drug delivery via combined effects on circulation, tumor drug accumulation and exposure and altered metabolism in normal tissues.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Microbolhas/uso terapêutico , Ondas Ultrassônicas , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Terapia Combinada/métodos , Feminino , Humanos , Irinotecano , Técnicas Analíticas Microfluídicas , Tomografia por Emissão de Pósitrons , Distribuição Tecidual/efeitos da radiação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Adv Sci (Weinh) ; 6(21): 1900911, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728277

RESUMO

2D metal nanomaterials offer exciting prospects in terms of their properties and functions. However, the ambient aqueous synthesis of atomically-thin, 2D metallic nanomaterials represents a significant challenge. Herein, freestanding and atomically-thin gold nanosheets with a thickness of only 0.47 nm (two atomic layers thick) are synthesized via a one-step aqueous approach at 20 °C, using methyl orange as a confining agent. Owing to the high surface-area-to-volume ratio, abundance of unsaturated atoms exposed on the surface and large interfacial areas arising from their ultrathin 2D nature, the as-prepared Au nanosheets demonstrate excellent catalysis performance in the model reaction of 4-nitrophenol reduction, and remarkable peroxidase-mimicking activity, which enables a highly sensitive colorimetric sensing of H2O2 with a detection limit of 0.11 × 10-6 m. This work represents the first fabrication of freestanding 2D gold with a sub-nanometer thickness, opens up an innovative pathway toward atomically-thin metal nanomaterials that can serve as model systems for inspiring fundamental advances in materials science, and holds potential across a wide region of applications.

3.
Langmuir ; 35(31): 10097-10105, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30901226

RESUMO

The production and stability of microbubbles (MBs) is enhanced by increasing the viscosity of both the formation and storage solution, respectively. Glycerol is a good candidate for biomedical applications of MBs, since it is biocompatible, although the exact molecular mechanisms of its action is not fully understood. Here, we investigate the influence glycerol has on lipid-shelled MB properties, using a range of techniques. Population lifetime and single bubble stability were studied using optical microscopy. Bubble stiffness measured by AFM compression is compared with lipid monolayer behavior in a Langmuir-Blodgett trough. We deduce that increasing glycerol concentrations enhances stability of MB populations through a 3-fold mechanism. First, binding of glycerol to lipid headgroups in the interfacial monolayer up to 10% glycerol increases MB stiffness but has limited impact on shell resistance to gas permeation and corresponding MB lifetime. Second, increased solution viscosity above 10% glycerol slows down the kinetics of gas transfer, markedly increasing MB stability. Third, above 10%, glycerol induces water structuring around the lipid monolayer, forming a glassy layer which also increases MB stiffness and resistance to gas loss. At 30% glycerol, the glassy layer is ablated, lowering the MB stiffness, but MB stability is further augmented. Although the molecular interactions of glycerol with the lipid monolayer modulate the MB lipid shell properties, MB lifetime continually increases from 0 to 30% glycerol, indicating that its viscosity is the dominant effect on MB solution stability. This three-fold action and biocompatibility makes glycerol ideal for therapeutic MB formation and storage and gives new insight into the action of glycerol on lipid monolayers at the gas-liquid interface.

4.
Methods ; 120: 91-102, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28434996

RESUMO

The influence of heparin and heparan sulphate (HepS) on the appearance and analysis of open promoter complex (RPo) formation by E. coli RNA polymerase (RNAP) holoenzyme (σ70RNAP) on linear DNA using ex situ imaging by atomic force microscopy (AFM) has been investigated. Introducing heparin or HepS into the reaction mix significantly reduces non-specific interactions of the σ70RNAP and RNAP after RPo formation allowing for better interpretation of complexes shown within AFM images, particularly on DNA templates containing more than one promoter. Previous expectation was that negatively charged polysaccharides, often used as competitive inhibitors of σRNAP binding and RPo formation, would also inhibit binding of the DNA template to the mica support surface and thereby lower the imaging yield of active RNAP-DNA complexes. We found that the reverse of this was true, and that the yield of RPo formation detected by AFM, for a simple tandem gene model containing two λPR promoters, increased. Moreover and unexpectedly, HepS was more efficient than heparin, with both of them having a dispersive effect on the sample, minimising unwanted RNAP-RNAP interactions as well as non-specific interactions between the RNAP and DNA template. The success of this method relied on the observation that E. coli RNAP has the highest affinity for the mica surface of all the molecular components. For our system, the affinity of the three constituent biopolymers to muscovite mica was RNAP>Heparin or HepS>DNA. While we observed that heparin and HepS can inhibit DNA binding to the mica, the presence of E. coli RNAP overcomes this effect allowing a greater yield of RPos for AFM analysis. This method can be extended to other DNA binding proteins and enzymes, which have an affinity to mica higher than DNA, to improve sample preparation for AFM studies.


Assuntos
DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Heparina/química , Heparitina Sulfato/química , Microscopia de Força Atômica/métodos , Regiões Promotoras Genéticas , Silicatos de Alumínio/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/ultraestrutura , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/ultraestrutura , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Holoenzimas/genética , Holoenzimas/metabolismo , Ligação Proteica , Fator sigma/química , Fator sigma/metabolismo , Transcrição Gênica
5.
Nano Lett ; 16(9): 5463-8, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27571473

RESUMO

Bottom up self-assembly of functional materials at liquid-liquid interfaces has recently emerged as method to design and produce novel two-dimensional (2D) nanostructured membranes and devices with tailored properties. Liquid-liquid interfaces can be seen as a "factory floor" for nanoparticle (NP) self-assembly, because NPs are driven there by a reduction of interfacial energy. Such 2D assembly can be characterized by reciprocal space techniques, namely X-ray and neutron scattering or reflectivity. These techniques have drawbacks, however, as the structural information is averaged over the finite size of the radiation beam and nonperiodic isolated assemblies in 3D or defects may not be easily detected. Real-space in situ imaging methods are more appropriate in this context, but they often suffer from limited resolution and underperform or fail when applied to challenging liquid-liquid interfaces. Here, we study the surfactant-induced assembly of SiO2 nanoparticle monolayers at a water-oil interface using in situ atomic force microscopy (AFM) achieving nanoscale resolved imaging capabilities. Hitherto, AFM imaging has been restricted to solid-liquid interfaces because applications to liquid interfaces have been hindered by their softness and intrinsic dynamics, requiring accurate sample preparation methods and nonconventional AFM operational schemes. Comparing both AFM and grazing incidence X-ray small angle scattering data, we unambiguously demonstrate correlation between real and reciprocal space structure determination showing that the average interfacial NP density is found to vary with surfactant concentration. Additionally, the interaction between the tip and the interface can be exploited to locally determine the acting interfacial interactions. This work opens up the way to studying complex nanostructure formation and phase behavior in a range of liquid-liquid and complex liquid interfaces.

6.
J R Soc Interface ; 12(102): 20141079, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25411409

RESUMO

Biological hydrogels have been increasingly sought after as wound dressings or scaffolds for regenerative medicine, owing to their inherent biofunctionality in biological environments. Especially in moist wound healing, the ideal material should absorb large amounts of wound exudate while remaining mechanically competent in situ. Despite their large hydration, however, current biological hydrogels still leave much to be desired in terms of mechanical properties in physiological conditions. To address this challenge, a multi-scale approach is presented for the synthetic design of cyto-compatible collagen hydrogels with tunable mechanical properties (from the nano- up to the macro-scale), uniquely high swelling ratios and retained (more than 70%) triple helical features. Type I collagen was covalently functionalized with three different monomers, i.e. 4-vinylbenzyl chloride, glycidyl methacrylate and methacrylic anhydride, respectively. Backbone rigidity, hydrogen-bonding capability and degree of functionalization (F: 16 ± 12-91 ± 7 mol%) of introduced moieties governed the structure-property relationships in resulting collagen networks, so that the swelling ratio (SR: 707 ± 51-1996 ± 182 wt%), bulk compressive modulus (Ec: 30 ± 7-168 ± 40 kPa) and atomic force microscopy elastic modulus (EAFM: 16 ± 2-387 ± 66 kPa) were readily adjusted. Because of their remarkably high swelling and mechanical properties, these tunable collagen hydrogels may be further exploited for the design of advanced dressings for chronic wound care.


Assuntos
Anidridos/química , Materiais Biocompatíveis/química , Colágeno/química , Hidrogéis/química , Engenharia Tecidual/métodos , Animais , Linhagem Celular , Força Compressiva , Módulo de Elasticidade , Elasticidade , Compostos de Epóxi/química , Teste de Materiais , Metacrilatos/química , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Processos Fotoquímicos , Poliestirenos , Polivinil/química , Pressão , Compostos de Amônio Quaternário , Ratos , Estresse Mecânico , Relação Estrutura-Atividade
7.
Sci Rep ; 4: 6158, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25142513

RESUMO

DNA topoisomerases control the topology of DNA. Type II topoisomerases exhibit topology simplification, whereby products of their reactions are simplified beyond that expected based on thermodynamic equilibrium. The molecular basis for this process is unknown, although DNA bending has been implicated. To investigate the role of bending in topology simplification, the DNA bend angles of four enzymes of different types (IIA and IIB) were measured using atomic force microscopy (AFM). The enzymes tested were Escherichia coli topo IV and yeast topo II (type IIA enzymes that exhibit topology simplification), and Methanosarcina mazei topo VI and Sulfolobus shibatae topo VI (type IIB enzymes, which do not). Bend angles were measured using the manual tangent method from topographical AFM images taken with a novel amplitude-modulated imaging mode: small amplitude small set-point (SASS), which optimises resolution for a given AFM tip size and minimises tip convolution with the sample. This gave improved accuracy and reliability and revealed that all 4 topoisomerases bend DNA by a similar amount: ~120° between the DNA entering and exiting the enzyme complex. These data indicate that DNA bending alone is insufficient to explain topology simplification and that the 'exit gate' may be an important determinant of this process.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , DNA/química , DNA/metabolismo , Microscopia de Força Atômica , Peso Molecular , Conformação de Ácido Nucleico , Ligação Proteica
8.
Langmuir ; 30(19): 5557-63, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24758714

RESUMO

Poly(ethylene glycol) (PEG) is widely used on the outside of biomedical delivery vehicles to impart stealth properties. Encapsulated gas microbubbles (MBs) are being increasingly considered as effective carriers for therapeutic intervention to deliver drug payloads or genetic vectors. MBs have the advantage that they can be imaged and manipulated by ultrasound fields with great potential for targeted therapy and diagnostic purposes. Lipid-shelled MBs are biocompatible and can be functionalized on the outer surface for tissue targeting and new therapeutic methods. As MBs become a key route for drug delivery, exploring the effect of PEG-ylation on the MB properties is important. Here, we systematically investigate the effect of PEG-lipid solution concentration ranging between 0 and 35 mol % on the formation of MBs in a microfluidic flow-focusing device. The abundance of the MBs is correlated with the MB lifetime and the whole MB mechanical response, as measured by AFM compression using a tipless cantilever. The maximal MB concentration and stability (lifetime) occurs at a low concentration of PEG-lipid (∼5 mol %). For higher PEG-lipid concentrations, the lifetime and MB concentration decrease, and are accompanied by a correlation between the predicted surface PEG configuration and the whole MB stiffness, as measured at higher compression loads. These results inform the rationale design and fabrication of lipid-based MBs for therapeutic applications and suggest that only relatively small amounts of PEG incorporation are required for optimizing MB abundance and stability while retaining similar mechanical response at low loads.


Assuntos
Microbolhas , Polietilenoglicóis/química , Espectrofotometria Atômica
9.
Langmuir ; 29(12): 4096-103, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23448164

RESUMO

Microbubbles (MBs) are increasingly being proposed as delivery vehicles for targeted therapeutics, as well as being contrast agents for ultrasound imaging. MBs formed with a lipid shell are promising candidates due to their biocompatibility and the opportunity for surface functionalization, both for specific targeting of tissues and as a means to tune their mechanical response for localized ultrasound induced destruction in vivo. Herein, we acquired force-deformation data on coated lipid MBs using tip-less microcantilevers in an atomic force microscope. Model lipid MBs were designed to test the effects of adding a functional coating on the outside of the lipid leaflet, including a protein coat (streptavidin) or the addition of quantum dots (Q-dots) as optical reporters. MBs (~3 µm diameter) were repeatedly compressed for deformations up to ~50% to obtain a full bubble response. Addition of a coating increased the initial deformation stiffness related to shell bending ~2-fold for streptavidin and ∼3-fold for Q-dots. The presence of a polyethylene glycol (PEG) linker in between the lipid and functional coating, led to enhanced stiffening at high deformations. The plasticity index has been determined and only those MBs that included the PEG linker showed a force dependent short time-scale (<~1s) plasticity. This study demonstrates modulation of the mechanical response of biocompatible MBs through the addition of functional coatings necessary for rationale design of therapeutic lipid MBs for targeted drug delivery.


Assuntos
Portadores de Fármacos/química , Microbolhas , Fosfatidiletanolaminas/química , Fosforilcolina/química , Avidina/química , Meios de Contraste/química , Composição de Medicamentos/métodos , Módulo de Elasticidade , Microscopia de Força Atômica , Imagem Molecular , Polietilenoglicóis/química , Pressão , Pontos Quânticos , Sonicação , Estreptavidina/química
10.
Methods ; 60(2): 122-30, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23500656

RESUMO

A polymerase chain reaction (PCR) based method of adding a single-stranded DNA (ssDNA) hairpin loop to one end of linear double-stranded (ds) DNA templates was developed. The loop structure serves as a fiducial marker in single molecule imaging by atomic force microscopy (AFM) and can be applied to study DNA-protein interactions. The nucleic acid end-labels allow discrimination of the polarity of the DNA template in the AFM while limiting non-specific interactions which might occur from non-nucleic acid labels. Homo-polynucleotide ssDNA loops made up of 20 base-pairs (bp) for each of the four bases (A, T, G, C) were investigated to determine the effects of sequence on template labelling. The products were produced with high efficiency and high yield with the loop readily distinguished from the dsDNA template by height and diameter in the AFM. The application of the method to study DNA transcription was investigated by firing Escherichia Coli RNA polymerase (RNAP) from a λPR promoter in the direction of the loop-labelled end. The ssDNA loops captured elongating complexes of RNAP, arresting transcription and preventing dissociation. The dual role of the loop as a polarity marker and retainer of previously active RNAP will allow mechanisms of gene expression to be studied with single molecule sensitivity by AFM. This will enable insight into molecular interactions of RNAP on single DNA templates in convergent or tandem transcription configurations.


Assuntos
DNA de Cadeia Simples/química , Microscopia de Força Atômica/métodos , Primers do DNA/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/química , RNA Polimerases Dirigidas por DNA/química , Marcadores Fiduciais , Sequências Repetidas Invertidas , Microscopia de Força Atômica/normas , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/normas , Regiões Promotoras Genéticas , Taq Polimerase/química , Transcrição Gênica
11.
Macromolecules ; 46(24): 9634-9641, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24478529

RESUMO

Derivatives of thymine have been extensively used to promote supramolecular materials assembly. Such derivatives can be synthetically challenging to access and may be susceptible to degradation. The current article uses a conformer-independent acceptor-donor-acceptor array (ureidopyrimidine) which forms moderate affinity interactions with diamidopyridine derivatives to effect supramolecular blend formation between polystyrene and poly(methyl methacrylate) polymers obtained by RAFT which have been functionalized with the hydrogen bonding motifs.

12.
Rev Sci Instrum ; 83(4): 043707, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22559539

RESUMO

We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community.

13.
Phys Biol ; 9(2): 021001, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22473059

RESUMO

Atomic force microscopy (AFM) can detect single biomacromolecules with a high signal-to-noise ratio on atomically flat biocompatible support surfaces, such as mica. Contrast arises from the innate forces and therefore AFM does not require imaging contrast agents, leading to sample preparation that is relatively straightforward. The ability of AFM to operate in hydrated environments, including humid air and aqueous buffers, allows structure and function of biological and biomolecular systems to be retained. These traits of the AFM are ensuring that it is being increasingly used to study deoxyribonucleic acid (DNA) structure and DNA-protein interactions down to the secondary structure level. This report focuses in particular on reviewing the applications of AFM to the study of DNA transcription in reductionist single-molecule bottom-up approaches. The technique has allowed new insights into the interactions between ribonucleic acid (RNA) polymerase to be gained and enabled quantification of some aspects of the transcription process, such as promoter location, DNA wrapping and elongation. More recently, the trend is towards studying the interactions of more than one enzyme operating on a single DNA template. These methods begin to reveal the mechanics of gene expression at the single-molecule level and will enable us to gain greater understanding of how the genome is transcribed and translated into the proteome.


Assuntos
DNA/química , Microscopia de Força Atômica/métodos , Transcrição Gênica , Silicatos de Alumínio , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Humanos , Microscopia de Força Atômica/instrumentação , Modelos Moleculares , Nanotecnologia , Regiões Promotoras Genéticas
14.
Nanoscale ; 4(7): 2463-9, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22374226

RESUMO

In dynamic atomic force microscopy (AFM) the cantilever is vibrated and its dynamics are monitored to probe the sample with nanoscale and atomic resolution. Amplitude and frequency modulation atomic force microscopy (AM-AFM and FM-AFM) have established themselves as the most powerful methods in the field. Nevertheless, it is still debatable whether one or the other technique is preferred in a given medium or experiment. Here, we quantitatively establish and compare the limitations in resolution of both techniques by introducing the concept of spatial horizon (SH) and quantifying it. The SH is the limiting spatial boundary beyond which collective atomic interactions do not affect the detection parameters of a given feedback system. We show that while an FM-AFM feedback can resolve a single atom or atomic defect where an AM feedback might fail, relative contrast is in fact equivalent for both feedback systems. That is, if the AM feedback could detect sufficiently small amplitude shifts and there was no noise, the detection of single atoms or atomic defects would be equivalent in AM-AFM and FM-AFM.


Assuntos
Microscopia de Força Atômica/métodos , Vibração , Fenômenos Químicos , Retroalimentação , Cinética , Modelos Biológicos , Modelos Teóricos
15.
Nucleic Acids Res ; 40(13): e99, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22453274

RESUMO

Visualization of DNA-protein interactions by atomic force microscopy (AFM) has deepened our understanding of molecular processes such as DNA transcription. Interpretation of systems where more than one protein acts on a single template, however, is complicated by protein molecules migrating along the DNA. Single-molecule AFM imaging experiments can reveal more information if the polarity of the template can be determined. A nucleic acid-based approach to end-labelling is desirable because it does not compromise the sample preparation procedures for biomolecular AFM. Here, we report a method involving oligonucleotide loop-primed synthesis for the end labelling of double-stranded DNA to discriminate the polarity of linear templates at the single-molecule level. Single-stranded oligonucleotide primers were designed to allow loop formation while retaining 3'-single-strand extensions to facilitate primer annealing to the template. Following a DNA polymerase extension, the labelled templates were shown to have the ability to form open promoter complexes on a model nested gene template using two Escherichia coli RNA polymerases in a convergent transcription arrangement. Analysis of the AFM images indicates that the added loops have no effect on the ability of the promoters to recruit RNA polymerase. This labelling strategy is proposed as a generic methodology for end-labelling linear DNA for studying DNA-protein interactions by AFM.


Assuntos
RNA Polimerases Dirigidas por DNA/análise , DNA/ultraestrutura , Microscopia de Força Atômica/métodos , DNA/química , Primers do DNA/química , DNA de Cadeia Simples/química , Regiões Promotoras Genéticas , Moldes Genéticos
16.
J Mech Behav Biomed Mater ; 5(1): 165-70, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22100091

RESUMO

Low frequency (0.1-2 Hz) dynamic mechanical analysis on individual type I collagen fibrils has been carried out using atomic force microscopy (AFM). Both the elastic (static) and viscous (dynamic) responses are correlated to the characteristic axial banding, gap and overlap regions. The elastic modulus (∼5 GPa) on the overlap region, where the density of tropocollagen is highest, is 160% that of the gap region. The amount of dissipation on each region is frequency dependent, with the gap region dissipating most energy at the lowest frequencies (0.1 Hz) and crossing over with the overlap region at ∼0.75 Hz. This may reflect an ability of collagen fibrils to absorb energy over a range of frequencies using more than one mechanism, which is suggested as an evolutionary driver for the mechanical role of type I collagen in connective tissues and organs.


Assuntos
Colágeno Tipo I/química , Fenômenos Mecânicos , Nanoestruturas/química , Animais , Fenômenos Biomecânicos , Elasticidade , Testes de Dureza , Ratos , Tendões , Viscosidade
17.
J Phys Chem Lett ; 3(16): 2125-9, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-26295758

RESUMO

Multifrequency atomic force microscopy holds promise as a method to provide qualitative and quantitative information about samples with high spatial resolution. Here, we provide experimental evidence of the excitation of subharmonics in ambient conditions in the regions where capillary interactions are predicted to be the mechanism of excitation. We also experimentally decouple a second mechanism for subharmonic excitation that is highly independent of environmental conditions such as relative humidity. This implies that material properties could be mapped. Subharmonic excitation could lead to experimental determination of surface water affinity in the nanoscale whenever water interactions are the mechanism of excitation.

18.
Nanotechnology ; 22(46): 465705, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22025083

RESUMO

Measuring the level of hydrophilicity of heterogeneous surfaces and the true height of water layers that form on them in hydrated conditions has a myriad of applications in a wide range of scientific and technological fields. Here, we describe a true non-contact mode of operation of atomic force microscopy in ambient conditions and a method to establish the source of apparent height. A dependency of the measured water height on operational parameters is identified with water perturbations due to uncontrolled modes of imaging where intermittent contact with the water layer, or even the surface, might occur. In this paper we show how to (1) determine when the water is being perturbed and (2) distinguish between four different interaction regimes. Each of the four types of interaction produces measurements ranging from fractions of the true height in one extreme to values which are as large as four times the real height in the other. We show the dependence of apparent height on the interaction regime both theoretically and empirically. The agreement between theory and experiment on a BaF2(111) sample displaying wet and un-wet regions validates our results.


Assuntos
Microscopia de Força Atômica/métodos , Água/química , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
19.
PLoS One ; 6(8): e23821, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912608

RESUMO

BACKGROUND: Accurate mechanical characterization by the atomic force microscope at the highest spatial resolution requires that topography is deconvoluted from indentation. The measured height of nanoscale features in the atomic force microscope (AFM) is almost always smaller than the true value, which is often explained away as sample deformation, the formation of salt deposits and/or dehydration. We show that the real height of nano-objects cannot be obtained directly: a result arising as a consequence of the local probe-sample geometry. METHODS AND FINDINGS: We have modeled the tip-surface-sample interaction as the sum of the interaction between the tip and the surface and the tip and the sample. We find that the dynamics of the AFM cannot differentiate between differences in force resulting from 1) the chemical and/or mechanical characteristics of the surface or 2) a step in topography due to the size of the sample; once the size of a feature becomes smaller than the effective area of interaction between the AFM tip and sample, the measured height is compromised. This general result is a major contributor to loss of height and can amount to up to ∼90% for nanoscale features. In particular, these very large values in height loss may occur even when there is no sample deformation, and, more generally, height loss does not correlate with sample deformation. DNA and IgG antibodies have been used as model samples where experimental height measurements are shown to closely match the predicted phenomena. CONCLUSIONS: Being able to measure the true height of single nanoscale features is paramount in many nanotechnology applications since phenomena and properties in the nanoscale critically depend on dimensions. Our approach allows accurate predictions for the true height of nanoscale objects and will lead to reliable mechanical characterization at the highest spatial resolution.


Assuntos
Microscopia de Força Atômica/métodos , Nanoestruturas/química , DNA/química , Imunoglobulina G/química
20.
Nanotechnology ; 22(34): 345401, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21799243

RESUMO

We describe fundamental energy dissipation in dynamic nanoscale processes in terms of the localization of the interactions. In this respect, the areal density of the energy dissipated per cycle and the effective area of interaction in which each process occurs are calculated for four elementary dissipative processes. It is the ratio between these two, which we term M, that provides information about how localized the interactions are. While our results are general, we use concepts from dynamic atomic force microscopy to describe the physical phenomenon. We show that neither the phase lag, nor the magnitude of the energy dissipated alone provide information about how dissipative processes are localized. Instead, M has to be considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...